Saturday, 7 October 2017

Variável Média Móvel


Índice Variável Índice Dinâmico Variável Médio Indicador Técnico Médico Dinâmico (VIDYA) foi desenvolvido por Tushar Chande. É um método original de cálculo da média móvel exponencial (EMA) com o período dinâmico da média. O período de média depende da volatilidade do mercado como medida de volatilidade. O eletricista de Chande Momentum (OCM) foi escolhido. Este oscilador mede a relação entre a soma dos incrementos positivos e a soma dos incrementos negativos durante um determinado período (período de OCM). O valor de CMO é usado como a relação com o factor de suavização EMA. Assim, VIDYA tem que configurar parâmetros: período de OCM e período de EMA. Aplicação Normalmente, não o próprio VIDYA é usado em sistemas de negociação, mas suas bordas superior e inferior (banda inferior Banda inferior), que são por N acima e abaixo de VIDYA. A interpretação do indicador para receber sinais comerciais nesta forma é realizada de forma semelhante a Bollinger Bandsreg. Cálculo A média móvel padrão exponencial é calculada de acordo com a fórmula abaixo: EMA (i) Preço (i) F EMA (i-1) (1-F) F 2 (Periodema1) fator de suavização Periodema EMA período de média Preço (i) atual Preço EMA (i-1) valor anterior da EMA. O valor da Média Dinâmica do Índice de Variáveis ​​é calculado de forma análoga usando CMO: VIDYA (i) Preço (i) F ABS (CMO (i)) VIDYA (i-1) (1 - F ABS (CMO (i))) ABS (CMO (i)) valor atual absoluto Chande Momentum Oscilador VIDYA (i-1) valor anterior de VIDYA. O valor de CMO é calculado de acordo com a fórmula abaixo: CMO (i) (UpSum (i) - DnSum (i)) (UpSum (i) DnSum (i)) UpSum (i) soma atual de incrementos de preços positivos para o período DnSum (i) soma atual de incrementos de preços negativos para o período. Data: análise de dados e software estatístico Nicholas J. Cox, Universidade de Durham, Reino Unido Christopher Baum, Boston College egen, ma () e suas limitações Statarsquos comando mais óbvio para calcular movimentação Médias é a função ma () de egen. Dada uma expressão, ela cria uma média móvel daquela expressão. Por padrão, é tomado como 3. deve ser estranho. No entanto, como a entrada manual indica, egen, ma () não podem ser combinados com varlist:. E, por esse motivo, não é aplicável aos dados do painel. Em qualquer caso, fica fora do conjunto de comandos especificamente escritos para séries temporais veja séries temporais para detalhes. Abordagens alternativas Para calcular as médias móveis para os dados do painel, existem pelo menos duas opções. Ambos dependem do conjunto de dados ter sido o tsset de antemão. Isto vale muito a pena fazer: não só você pode economizar várias vezes especificando a variável do painel e a variável de tempo, mas o Stata se comporta de forma inteligente com quaisquer lacunas nos dados. 1. Escreva sua própria definição usando gerar Usando operadores de séries temporais, como L. e F.. Dê a definição da média móvel como o argumento para uma declaração de geração. Se você fizer isso, você, naturalmente, não está limitado às médias móveis ponderadas (não ponderadas), calculadas por egen, ma (). Por exemplo, as médias móveis de três períodos, igualmente ponderadas, seriam dadas e alguns pesos podem ser facilmente especificados: você pode, é claro, especificar uma expressão como log (myvar) em vez de um nome de variável como myvar. Uma grande vantagem desta abordagem é que a Stata faz automaticamente o que é certo para os dados do painel: os valores avançados e atrasados ​​são elaborados dentro dos painéis, assim como a lógica dita que deveria ser. A desvantagem mais notável é que a linha de comando pode ficar bastante longa se a média móvel envolver vários termos. Outro exemplo é uma média móvel unilateral baseada apenas em valores anteriores. Isso pode ser útil para gerar uma expectativa adaptativa sobre o que uma variável será baseada puramente em informações até à data: o que alguém poderia prever para o período atual com base nos quatro últimos valores, usando um esquema de ponderação fixa (um atraso de 4 períodos pode ser Especialmente comumente usado com timeseries trimestrais.) 2. Use egen, filter () de SSC Use o filtro de função egen () do usuário do pacote egenmore em SSC. No Stata 7 (atualizado após 14 de novembro de 2001), você pode instalar este pacote depois do qual ajuda, além disso, aponta para detalhes no filtro (). Os dois exemplos acima serão renderizados (Nesta comparação, a abordagem de geração é talvez mais transparente, mas veremos um exemplo do oposto em um momento.) Os atrasos são um número. Leva a desvios negativos: neste caso -11 se expande para -1 0 1 ou liderar 1, lag 0, lag 1. Os coeficientes, outro número, multiplicam os itens atrasados ​​ou atrasados ​​correspondentes: neste caso, esses itens são F1.myvar . Myvar e L1.myvar. O efeito da opção de normalização é escalar cada coeficiente pela soma dos coeficientes de modo que o coeficiente de coeficiente (1 1 1) seja equivalente aos coeficientes de 13 13 13 e a normalização de coef (1 2 1) seja equivalente aos coeficientes de 14 12 14 . Você deve especificar não apenas os atrasos, mas também os coeficientes. Como egen, ma () fornece o caso igualmente ponderado, a lógica principal para egen, filter () é suportar o caso pontualmente ponderado, para o qual você deve especificar coeficientes. Também pode-se dizer que obrigar os usuários a especificar coeficientes é uma pressão pequena sobre eles para pensar sobre os coeficientes que eles querem. A principal justificativa para os pesos iguais é, contudo, a simplicidade, mas pesos iguais têm propriedades de domínio de freqüência péssimas, para mencionar apenas uma consideração. O terceiro exemplo acima poderia ser qualquer um dos quais é tão complicado quanto a abordagem de geração. Há casos em que egen, filter () dá uma formulação mais simples do que gerar. Se você quer um filtro binomial de nove séculos, que os climatologistas acham útil, então parece talvez menos horrível do que, e mais fácil de conseguir, do mesmo modo, assim como com a abordagem de geração, egen, filter () funciona corretamente com os dados do painel. Na verdade, como afirmado acima, depende do conjunto de dados ter sido tsset de antemão. Uma dica gráfica Depois de calcular suas médias móveis, você provavelmente vai querer olhar para um gráfico. O comando do usuário com tsgraph é inteligente sobre conjuntos de dados tsset. Instale-o em um stata 7 atualizado por ssc inst tsgraph. E quanto a subconjunto com se nenhum dos exemplos acima faz uso de restrições if. Na verdade egen, ma () não permitirá se for especificado. Ocasionalmente, as pessoas querem usar se ao calcular médias móveis, mas seu uso é um pouco mais complicado do que normalmente. O que você esperaria de uma média móvel calculada com if. Vamos identificar duas possibilidades: interpretação fraca: não quero ver nenhum resultado para as observações excluídas. Interpretação forte: eu nem quero que você use os valores para as observações excluídas. Aqui está um exemplo concreto. Suponha que, como consequência de alguma condição, as observações 1-42 estão incluídas, mas não as observações 43. Mas a média móvel para 42 dependerá, entre outras coisas, do valor para a observação 43, se a média se estender para trás e para frente e for pelo menos de 3, e dependerá de algumas das observações 44 em algumas circunstâncias. Nosso palpite é que a maioria das pessoas iria para a interpretação fraca, mas se isso é correto, egen, filter () não é compatível se também. Você sempre pode ignorar o que você não quer ou mesmo definir valores indesejados a perder depois, usando a substituição. Uma nota sobre resultados faltantes nas extremidades da série Como as médias móveis são funções de atrasos e ligações, egen, ma () produz ausente onde os atrasos e as derivações não existem, no início e no final da série. Uma opção de nomiss força o cálculo de médias móveis mais curtas e não centradas para as caudas. Em contraste, nem gerar nem egen, filter () faz, ou permite, qualquer coisa especial para evitar resultados perdidos. Se algum dos valores necessários para o cálculo estiver faltando, esse resultado está faltando. Cabe aos usuários decidir se e quais cirurgias corretivas são necessárias para essas observações, presumivelmente depois de olhar para o conjunto de dados e considerando qualquer ciência subjacente que possa ser trazida. O código de exemplo na guia Código completo ilustra como calcular a mudança Média de uma variável através de um conjunto de dados inteiro, nas últimas N observações em um conjunto de dados ou nas últimas N observações dentro de um grupo BY. Esses exemplos de arquivos e exemplos de código são fornecidos pelo SAS Institute Inc., tal como está sem garantia de qualquer tipo, expressa ou implícita, incluindo, entre outras, as garantias implícitas de comercialização e adequação para um propósito específico. Os destinatários reconhecem e concordam que o SAS Institute não será responsável por quaisquer danos decorrentes do uso deste material. Além disso, o SAS Institute não fornecerá suporte para os materiais aqui contidos. Esses exemplos de arquivos e exemplos de código são fornecidos pelo SAS Institute Inc., tal como está sem garantia de qualquer tipo, expressa ou implícita, incluindo, entre outras, as garantias implícitas de comercialização e adequação para um propósito específico. Os destinatários reconhecem e concordam que o SAS Institute não será responsável por quaisquer danos decorrentes do uso deste material. Além disso, o SAS Institute não fornecerá suporte para os materiais aqui contidos. Calcule a média móvel de uma variável através de um conjunto de dados inteiro, nas últimas N observações em um conjunto de dados ou nas últimas N observações dentro de um grupo BY.

No comments:

Post a Comment